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Abstract

Neuroeconomics is providing insights into the neural bases of decision-making in normal and pathological conditions. In the
neuropsychiatric domain, this discipline investigates how abnormal functioning of neural systems associated with reward
processing and cognitive control promotes different disorders, and whether such evidence may inform treatments. This endeavor
is crucial when studying different types of addiction, which share a core promoting mechanism in the imbalance between
impulsive subcortical neural signals associated with immediate pleasurable outcomes and inhibitory signals mediated by a
prefrontal reflective system. The resulting impairment in behavioral control represents a hallmark of alcohol use disorders
(AUDs), a chronic relapsing disorder characterized by excessive alcohol consumption despite devastating consequences. This
review aims to summarize available magnetic resonance imaging (MRI) evidence on reward-related decision-making alterations
in AUDs, and to envision possible future research directions. We review functional MRI (fMRI) studies using tasks involving
monetary rewards, as well as MRI studies relating decision-making parameters to neurostructural gray- or white-matter metrics.
The available data suggest that excessive alcohol exposure affects neural signaling within brain networks underlying adaptive
behavioral learning via the implementation of prediction errors. Namely, weaker ventromedial prefrontal cortex activity and
altered connectivity between ventral striatum and dorsolateral prefrontal cortex likely underpin a shift from goal-directed to
habitual actions which, in turn, might underpin compulsive alcohol consumption and relapsing episodes despite adverse conse-
quences. Overall, these data highlight abnormal fronto-striatal connectivity as a candidate neurobiological marker of impaired
choice in AUDs. Further studies are needed, however, to unveil its implications in the multiple facets of decision-making.

Keywords Alcohol use disorder - Decision-making - Reward - Neuroeconomics - fMRI - Brain morphometry

Introduction and experience of negative emotional states when access to

alcohol is prevented [1]. To define AUDs, the DSM-V com-

Alcohol use disorders (AUDs) are chronic relapsing disorders
characterized by excessive alcohol consumption despite its
devastating consequences, loss of control in limiting intake
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bined dependence and abuse, previously conceptualized as
two separate and hierarchical disorders, into one single con-
struct ranging from mild to moderate to severe. In particular,
diagnostic criteria for AUDs emphasize an impairment in be-
havioral control. Namely, the main hallmark of AUDs is not
just alcohol use in itself, but rather the struggle to control its
consumption. At the neuropsychological level of analysis,
such impairment may be analyzed within a framework involv-
ing several cognitive domains, from the evaluative processes
underlying decision-making, to executive functioning and
cognitive control. These aspects need to be disentangled from
the complex pattern of neuropsychological consequences of
the toxic effect of alcohol and related comorbidities (nutrition-
al deficiencies, metabolic dysfunctions, additional dependen-
cies, etc.) [2], which contribute to chronic cognitive dysfunc-
tion up to the level of dementia [3].
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To date, two (not mutually exclusive) theories have been
proposed to account for a basic decision-making disorder.

On one side, control-related deficit theories describe
addictions as resulting from the imbalance between the
so-called impulsive and reflective systems, i.e., two sepa-
rate but interacting brain networks associated with oppo-
sitely valenced mechanisms of behavioral control [4, 5].
The hyperactivity of the impulsive system, associated with
bottom-up affective states mediated by limbic reward-
related structures such as amygdala and striatum [6], would
lead to overestimate the impact of the immediate choice
prospects [7]. Conversely, the hypo-activity of the reflec-
tive system, involving the anterior cingulate and prefrontal
cortex, would lead to underestimate the impact of future
prospects, such as the negative consequences of alcohol
use. The combination of these two abnormal mechanisms
might impair top-down cognitive control processes associ-
ated with the medial prefrontal cortex [8, 9]. This imbal-
ance may thus bias decision-making processes towards
bottom-up impulsive signals, at the expenses of top-down
goal-driven attentional resources needed to exert behavior-
al control over alcohol search and consumption.

The so-called reward-related deficit theories highlight the
role played by a motivational brain network energizing be-
havior via the processing of (anticipated or experienced) re-
warding vs. stressing stimuli/events [ 10, 11]. In this perspec-
tive, the development of addiction reflects a progression
from impulsivity to compulsivity mainly driven by negative
reinforcement, i.e., by the need to escape the aversive state
associated with the craving for alcohol. In turn, the latter is
considered to reflect the dysregulation of specific neuro-
chemical elements within several limbic structures such as
amygdala and the ventral striatum, leading to decreased ac-
tivity of the reward system and increased activity of the stress
system. The latter, indeed, is thought to be activated by acute
excessive drug intake and sensitized during repeated with-
drawal. The persistence of this abnormal functioning into
protracted abstinence would then contribute to the compul-
sivity of alcoholism [12].

In recent years, novel insights into the neural basis of
decision-making impairments in AUDs are coming from
neuroeconomics, an interdisciplinary research field com-
bining notions and methods from behavioral economics
and cognitive neuroscience to identify the neural bases of
adaptive behavioral learning in normal and pathological
conditions [13]. In the neuropsychiatric domain, this trans-
lational discipline aims to investigate how the relationship
between neural systems associated with reward processing
and cognitive control promotes the development and/or
maintenance of disorders, and whether neurocognitive ev-
idence may predict relapses and inform treatments. In par-
ticular, an abnormal functioning of the meso-cortico-limbic
reward brain system is considered a possible biomarker or
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endophenotype for several neuropsychiatric disorders [14].
The reward dopaminergic pathway, indeed, is the core
brain system in decision-making, activated by a variety of
primary [15] and secondary rewards, including monetary
[16] or social [17] ones.

Here we review and discuss such evidence by adopting
a well-established distinction [18] among three key stages
of decision-making processes, i.c., outcome anticipation,
outcome experience, as well as outcome evaluation
resulting in behavioral adaptations to past experience
(learning). The former process entails the evaluation of
potential outcomes before making a decision, and is re-
ferred to as “decision utility” in the case of a pure antic-
ipation, i.e., with no expectation of knowing the actual
outcome [19, 20]. When the latter is known, instead, the
decision-maker can evaluate the actual consequences of
her/his choices, which are automatically compared with
expectations. Such comparison results in a “prediction
error” signal (either in outcome magnitude, probability,
or timing), shaping adaptive behavioral learning in subse-
quent choices [21, 22]. While different facets of this pro-
cess engage specific structures within the meso-cortico-
limbic pathway, they all seem to share the involvement
of the striatum [18]. The latter displays an asymmetric
bidirectional response of activation for anticipated gains
and deactivation for anticipated losses [19, 20, 23], with
the steeper degree of deactivation vs. activation reflecting
individual differences in the typical tendency to over-
weigh potential losses relative to gains (i.e., loss aversion)
[24].

This review aims to provide a concise summary of
available magnetic resonance imaging (MRI) evidence
on reward-related decision-making alterations in AUDs,
to identify gaps in a growing literature and to envision
possible future directions. Due to our focus on decision-
making processes, we will review functional MRI (fMRI)
studies using mostly tasks involving monetary rewards,
as well as MRI studies relating choice-related parameters
to neurostructural gray- or white-matter metrics. Since
our aim is to draw connections between impaired
decision-making and abnormal activity of the reward
brain system, we will exclude studies without a healthy
control group (see Table 1). Moreover, given the focus
on chronic alcohol abuse, we will exclude studies on
young individuals. The Altered reward-related brain ac-
tivity in AUDs section summarizes available evidence on
abnormal brain activity associated with alterations in the
three decision-making stages described above. In the
Neurostructural alterations in AUDs section, we address
neurostructural changes (involving both gray- and white-
matter) in AUDs, while in Conclusions section, we dis-
cuss current gaps in the literature and possible future
research directions.
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Altered reward-related brain activity in AUDs
Outcome anticipation

Outcome anticipation entails estimating the magnitude and/or
probability of available choice options. Most theoretical ap-
proaches to decision-making, from expected utility theory
[27] to prospect theory [24] and reinforcement learning [28],
share the notion that choices require the integration of such
attributes into a single “expected value” signal. The latter
represents the overall subjective value assigned to each avail-
able option, which in principle should drive choices. In fact,
longstanding evidence in behavioral economics highlights
large inter-individuals differences in the value which risk-
averse vs. risk-seeking individuals assign to the presence of
risk (as compared with certainty) or to the amount of risk (the
variance of the distribution of positive vs. negative outcomes).
By unveiling neural signals reflecting these choice variables,
in the past decade neuroimaging studies have highlighted dis-
tinct but interactive brain systems for the processing of sub-
jective expected value and risk [29]. Overall, these studies
have shown that gain anticipation recruits the striatum and
anterior cingulate cortex [19, 20], while anticipated losses
engage the amygdala and insular cortex [16, 19]. The medial
orbitofrontal cortex seems to integrate these two anticipatory
drives into an expected value signal [30, 31], and to process
the amount of risk inherent in the choice [22].

There is evidence for an unbalanced activity within this
neural circuity, and particularly in the ventral striatum, C dur-
ing outcome anticipation. The observed findings, however,
are not completely consistent and seem to be largely depen-
dent on the use of different tasks tapping specific facets of
anticipatory processes. Several studies employed the mone-
tary incentive delay task (MID), or its modified versions in
which reward delivery requires variable efforts, to study the
neural processing of subjective expected value during gain/
loss anticipation in both detoxified and alcoholic patients.
After seeing cues indicating that they may win or lose money,
participants wait for a variable anticipatory delay period, and
finally respond to a rapidly presented target to try to either
win, or avoid losing, money [16]. Decreased ventral striatal
activity has been frequently reported in AUD patients com-
pared with controls in this task [32—35]. Moreover, in patients,
the degree of such reduction correlates with the severity of
craving [32], impulsivity [33], and depressive symptoms
[34]. Other studies, however, have reported opposite results,
i.e., increased activity of ventral and dorsal striatum during
gain/loss anticipation by alcoholic patients [36]. The observa-
tion of the latter pattern in trials characterized by low effort
demand, but not in those requiring stronger effort [36], sug-
gests a possible impairment in the computation of expected
value. These results, however, were not replicated by Bjork
et al. [37, 38], who failed to observe differences in ventral
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striatal activity between AUD patients and controls during
gain/loss anticipation. This inconsistency may depend on in-
trinsic features of the different variants of the task, including
the possibility to lose money, the smaller number of trials or
the longer average interstimulus interval.

Van Holst et al. [39] used a modified version of a card-
guessing task to investigate possible group differences in cod-
ing expected value for gains vs. losses, while also
distinguishing the effect of outcome magnitude and probabil-
ity. The latter are made available for both possible gains and
losses, but the outcomes are obtained passively, i.e., with no
requirement for an instrumental response. Compared with
controls, alcoholic patients displayed stronger neural re-
sponses to the anticipation of both gain-related expected value
in the left caudate and its outcome magnitude component in
the left caudate and left putamen. Instead, no group difference
was found neither for loss-related expected value nor for its
outcome probability component.

During risk-taking paradigms, alcoholic patients seem to
lack the clear segregation, displayed by controls, between
the brain networks associated with making safe vs. risky de-
cisions, which suggests a general imbalance of the conflict-
monitoring neural circuitry underlying decision-making under
risk [25, 40, 41]. In risky trials, patients additionally showed
stronger anticipatory activity in brain networks associated
with motor and executive control, as well as in the insula,
anterior cingulate cortex and basal ganglia [25, 41].
Although the lack of significant differences in choice behavior
suggested a preserved detection of risk, such an altered recruit-
ment of related brain networks might reflect a defective switch
between neural systems associated with decision-making in
safe vs. risky situations. This hypothesis may account for the
alcoholics’ failure to inhibit drinking behavior despite its
consequences.

To summarize, the available evidence of abnormal ventral
striatal activity during outcome anticipation, particularly for
gains, seems to reflect altered computations of expected value
and risk in alcoholic patients. The partial inconsistency of
such results, however, highlights the need of further in-depth
investigations.

Outcome experience

Attending the outcome of own choices is a critical stage of
decision-making, in which the comparison with expectations
generates reward prediction errors (PEs), i.e., learning signals
promoting behavioral adaptations in subsequent choices [21,
28]. Outcome experience thus provides novel, often emotion-
ally connotated [42], information either confirming expecta-
tions or prompting their update.

Neuroimaging studies have highlighted the crucial role of
prefrontal cortex and ventral striatum in processing outcomes
and computing PEs in healthy individuals [43, 44], with the



Neurol Sci

medial and lateral sectors of orbitofrontal cortex responding,
respectively, to rewarding and punishing outcomes [45].
There is evidence that the ventromedial prefrontal cortex
(vmPFC) is involved in the processing of the contextual fea-
tures of reward [46], while the dorsolateral prefrontal cortex
(dIPFC)—and particularly its frontopolar sector—mediates
the switch to explorative choice when the utility associated
with the current choice falls below a given threshold
[47—49]. Outcome experience and ensuing adaptive behavior-
al learning are thus likely to depend on fronto-striatal connec-
tivity. Different studies have reported inconsistent findings on
brain activity underlying the experience of non-drug rewards
in alcoholics compared with controls. Namely, while some
studies highlighted increased activity in the ventral striatum
(nucleus accumbens) and anterior insula [37], others reported
no group difference during such feedback evaluation [33, 36,
38, 40].

The growing interest in brain functional connectivity has
prompted novel lines of inquiry concerning possible alter-
ations of feedback evaluation in AUDs. In particular,
psycho-physiological-interaction (PPI) [50] analyses have
been used to investigate fronto-striatal functional connectivity
during outcome experience. Compared with controls, alcohol-
ic patients exhibited altered functional connectivity in re-
sponse to monetary rewards, but not losses, between the bilat-
eral ventral striatum and different sectors of the prefrontal
cortex, i.e., lateral orbitofrontal cortex (OFC), medial prefron-
tal cortex (mPFC) and dIPFC [26, 51]. Both the intensity of
medial prefrontal activity and its connectivity with the nucleus
accumbens were associated with drinking characteristics (i.e.,
years drinking, number of drinks per use, frequency and se-
verity [51], magnitude of alcohol craving [26]), suggesting
that the altered functioning of the fronto-striatal reward cir-
cuitry may represent an endophenotype of AUDs.

In spite of abnormal activity underlying outcome evalua-
tion, however, the ability to compute classical PEs seems to be
preserved in alcoholic patients [26, 52—-55]. Different studies,
using reward-guided decision-making paradigms, found no
group difference in the correlation between individually gen-
erated trial-wise PEs and the activity of the regions underlying
outcome evaluation described above, i.e., ventral striatum
alongside orbitofrontal, anterior cingulate, or PFC [26,
52-55].

Overall, the consistent evidence of abnormal fronto-striatal
connectivity in the processing of positive feedbacks by alco-
holic patients thus suggests that decision-making impairments
may reflect an altered implementation of PEs in subsequent
choices.

Outcome evaluation and behavioral learning

The formation of an alcohol habit may be considered a form of
reinforced learning, with sustained alcohol use resulting in the

strengthening of associative links between consumption and
either rewarding experiences or the lack of aversive experi-
ences (i.e., respectively, positive and negative reinforcement).
Reinforcement learning theory [28] states that such associa-
tions underlie the agents’ ability to learn from experience, i.e.,
to adapt to past action-outcome contingencies via different
computational routines.

In classical behavioral learning, PEs arise from compari-
sons between factual states, associated with affective experi-
ences such as delusion and gloating for outcomes worse or
better than expected, respectively [21]. Increasing evidence,
however, shows that agents also process the foregone—
counterfactual—outcomes of discarded options [56]. In this
case, the difference between factual and counterfactual states
(i.e., a “fictive” PE) shapes the valence and intensity of com-
plex emotions such as regret and relief for outcomes worse or
better than the foregone ones [57-59]. Two reinforcement
learning models, i.e., model-free and model-based, have been
proposed to ground these different computations [60, 61]. In
the framework of neuroeconomics, several evidences suggest
that these models are associated with two different behavioral
control processes, i.e., habitual and goal-directed. The latter,
associated with model-based reinforcement learning mecha-
nism, are engaged under volitional control. Habitual re-
sponses, instead, are directly triggered by environmental cues
even when the outcomes have lost their goal value, and are
associated with model-free mechanism leading to achieve de-
sirable outcomes (positive reinforcement) or to avoid/escape
from aversive outcomes (negative reinforcement) [60, 61].
While goal-directed actions (flexible, but also slow to acquire)
are associated with the activation of the vmPFC and dorsal
caudate, habitual responses (inflexible but quick and automat-
ic) involve the posterior putamen [62—64].

In AUDs, chronically compulsive alcohol seeking may
thus be considered to reflect a gradual shift from goal-
directed towards habitual control [65]. To address this hypoth-
esis, some authors have assessed the possible imbalance of the
two control processes in AUDs via learning tasks allowing to
distinguish between goal-directed vs. habitual actions, i.e.,
instrumental learning [66] or reward-guided decision-making
tasks [26, 52-55]. A bias towards the automatic process, in
alcoholic patients compared with controls, is suggested by
weaker activations in the vmPFC and anterior putamen during
goal-directed behavior, and stronger activation in the posterior
putamen during habitual behavior. Supporting the close con-
nection between such imbalance and the disease progression,
the decrease of vimPFC activity during goal-directed behavior
is positively associated with AUD duration, but not with age
[66].

In addition, despite the patients’ preserved ability to com-
pute classical PEs [26, 52; see Outcome experience], abnor-
mal brain activity associated with the computation of fictive
PEs has been observed in the mPFC, posterior cingulate
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cortex (PCC) [53, 55], bilateral dIPFC and bilateral dorsal
premotor areas, as well as the right intraparietal sulcus (IPS)
[54].

There is, thus, multi-faceted evidence of impaired imple-
mentation, in AUDs, of experienced PEs in subsequent
choices (i.e., behavioral learning). First, alcoholic patients dis-
play a strong correlation between the degree of alteration of
fronto-striatal connectivity (particularly between ventral stria-
tum and dIPFC) and the decrease of learning rate, as indexed
by a larger number of trials needed to reverse behavior [52]. In
addition, model-based evidence highlighted, in patients, a de-
crease of PFC activity which was both associated with im-
paired learning from fictive PEs [53-55], and correlated with
the observed behavioral deficit in updating alternative choices
as well as with obsessive compulsive drinking habits [53].
Finally, the severity of alcohol dependence is related to the
decrease of activity in the same dIPFC activity tracking neg-
ative PE signals, which suggests a critical role of this region in
adapting to contingency changes via the extinction of behav-
iors that are no longer rewarding [55]. Overall, this evidence
may explain the frequent observation of impaired flexible be-
havior in alcoholics [52], which once again supports the shift
from goal-directed to habitual behaviors as a possible hall-
mark of impaired behavioral control in AUDs.

Moreover, in alcoholic patients, the ability to learn from
past experiences is also more strongly modulated by cumula-
tive earnings than in healthy individuals. Unlike controls, pa-
tients display heightened activity (related to impulsivity mea-
sures) in the caudate, putamen, and insula as earnings
increase, particularly during risky choices [40]. The enhanc-
ing effect of cumulative earnings on striatal activation in
AUDs may be indicative of their heightened sensitivity to
risky choices after the experience of positive outcomes.

Overall, these results converge on the hypothesis of abnor-
mal fronto-striatal connectivity as a neural marker of altered
reinforcement learning in AUDs, driving a maladaptive shift
from goal-directed to automatic (i.e., stimulus-response) con-
sumption behaviors [65-67]. Like other types of addiction,
AUDs seem, thus, to reflect a maladaptive behavioral learning
processes, promoted by associative links between alcohol
consumption and the achievement of rewarding, or the escape
from punishing, behavioral states.

The strength of such alcohol-relevant associations in AUDs
has been recently addressed with an “alcohol implicit associ-
ation task” (alcohol-IAT) [68]. In its original form, the TAT
allows to highlight implicit attitudes by measuring, in terms of
response time, the differential strength of the mental associa-
tion of two concepts (“target” and “contrast” concepts) with a
given attribute [69]. In this case, alcohol and mammal are,
respectively, the target and contrast concepts to be assessed
with respect to “positive” and “neutral” attributes. The critical
index of implicit attitude is represented by the differential
response time measured in so-called normatively compatible
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(e.g., “alcohol positive” and “mammal neutral”) vs. incom-
patible (e.g., “mammal positive” and “alcohol neutral”) pairs.
Heavy drinkers displayed stronger positive implicit associa-
tions towards alcohol compared with a control group of light
drinkers. At the neural level, they also showed greater activity
in the left putamen and right insula during compatible trials,
and weaker activity in the left OFC regardless of trial type.
Interestingly, both groups revealed significant bilateral dIPFC
activity during incompatible trials. This latter result suggests
that also in alcoholics, the categorization of these trials re-
quires an effortful and controlled processing of information.

Neurostructural alterations in AUDs

The evidence summarized so far has prompted the investiga-
tion of possible structural changes, in AUDs, in the brain
networks in charge of decision-making, and their possible
relationship with choice processes.

Preliminary evidence highlighted, in alcoholics compared
with controls, a reduction of gray-matter volume—related to
working-memory scores—in key nodes of these networks,
such as the right anterior insula, right nucleus accumbens,
and left amygdala, as well as right dorsolateral prefrontal cor-
tex [70]. The positive correlation between the length of absti-
nence and gray-matter volume of nucleus accumbens and an-
terior insula highlights the potential recovery of structural def-
icits in AUDs. Available studies, however, provided inconsis-
tent evidence relating altered decision-making abilities with
brain structural changes. Le Berre et al. [71] highlighted in
alcoholics a widespread GM atrophy (correlating with the
severity of decision-making deficits) in key nodes of the re-
ward system such as vmPFC, dorsal portion of the anterior
cingulate cortex, and hippocampal formation. Conversely, via
region-of-interest analyses Fein and colleagues [72] reported,
in patients vs. controls, a bilateral gray-matter (GM) volume
reduction in the amygdala (but not in the vmPFC), and no
relationship with decision-making deficits. Importantly, this
type of investigation is complicated by the fact that, as men-
tioned in the Introduction, structural brain changes may actu-
ally depend on factors other than toxic alcohol effects, possi-
bly contributing to chronic cognitive dysfunction [2].

To date, instead, little is known about a possible relation-
ship between decision-making impairments and abnormal
white-matter integrity in AUDs. Again, the possible contribu-
tion for additional factors (e.g., vascular damage) needs to be
considered. Different white-matter profiles have been found in
early vs. long-term abstainers. The former group is character-
ized by worse performance on the lowa gambling task, a
widely used test assessing the ability to adapt choice behavior
to novel reward and punishment contingencies [73]. Although
suggestive of impaired reversal learning, such abnormal per-
formance did not reflect in the observed reduction of axonal
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integrity, i.e., lower fractional anisotropy (FA), in the corpus
callosum, parietal, occipital, and frontal tracts [74]. After
long-term abstinence, instead, neither decision-making abili-
ties nor fractional anisotropy was found to differ between
patients and controls. Detoxified alcoholics, however, show
significant changes in axial and radial diffusivity in specific
frontal, parietal, and temporal clusters [75]. The higher axial
diffusivity observed in long-term abstinent patients compared
with healthy controls is suggestive of compensatory repair
processes of axonal injuries. Nevertheless, even after a long
period of abstinence alcoholics still show increased radial dif-
fusivity values, suggestive of alcohol-related myelin
degradation.

Further evidence is thus needed to understand whether a
recovery of white-matter integrity parallels the improvement
in decision-making skills with abstinence, as well as the un-
derlying neurobiological processes.

Conclusions

The neurocognitive bases of a decision-making impairment in
AUDs represent a growing topic in neuroeconomics.
Although the evidence reviewed here calls for further in-
depth investigations, the available data suggest that excessive
alcohol exposure affects neuroplasticity and neural signaling
within brain networks in charge of reward processing and
adaptive behavioral learning. In particular, abnormal ventral
striatal activity and fronto-striatal connectivity in response to a
variety of rewarding stimuli may represent a hallmark of mal-
adaptive decision-making in AUDs. Although most published
studies provided evidence of abnormal outcome anticipation
(particularly for gains), the extent to which other, more spe-
cific, facets of reward processing are impaired is a matter of
debate and should be pursued further. In particular, the possi-
ble relationship between abnormal ventral striatal activity and
altered processing of value and risk in AUDs is controversial.
Moreover, some studies reported abnormal computations of
fictive PEs in alcoholics, highlighting the role of altered
fronto-striatal connectivity while processing action feedback
during outcome experience. A defective ability to learn from
past experience, reported by several studies, likely underpins
compulsive alcohol consumption and relapsing episodes de-
spite negative consequences. This maladaptive form of behav-
ioral learning seems to reflect a shift from goal-directed to
habitual actions promoted both by weaker vimPFC activity
and altered connectivity between ventral striatum and both
dorsolateral and medial prefrontal cortex.

Overall, these data highlight abnormal fronto-striatal con-
nectivity as a candidate neurobiological marker of impaired
choice in AUDs. Further studies are needed, however, to un-
veil its implications in the multiple facets of decision-making.

The evidence on neurostructural changes associated with
decision-making impairments in AUDs is nowadays limited.
While different studies reported a reduction of gray-matter
volume in key nodes of the meso-cortico-limbic network as-
sociated with adaptive behavioral learning, such as bilateral
amygdala, vmPFC, dorsal portion of the anterior cingulate
cortex, and hippocampal formation, the connection between
such structural alterations and defective decision-making is
weak. Stronger evidence links abnormal decision-making per-
formance and a reduction of white-matter integrity associated
with excessive alcohol exposure. Moreover, preliminary evi-
dence supports the notion that both behavioral and white-
matter alterations are at least partially reversed by long-term
abstinence.

In sum, while growing evidence suggests a neurophysio-
logical basis of a variety of behavioral alterations in alcoholic
patients, current gaps in this growing literature highlight novel
directions for further interdisciplinary investigations of the
neural underpinnings of decision-making impairments and
behavioral control in AUDs.
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